18-819F: Introduction to Quantum Computing 47-779/47-785: Quantum Integer Programming \& Quantum Machine Learning

Mathematical Programming

Lecture 03
2021.09.09

TTEPPER

Agenda

- Constrained Optimization Models
- Linear Programming
- Simplex and Interior Point methods
- Duality brief overview
- (Mixed-)Integer Programming
- Branch and bound and cutting planes
- (Mixed-)Integer Nonlinear Programming
- Nonlinearity
- Intro to Complexity

TTEPPER

Constrained Optimization Models

- Exploration of real-world, looking for optimal solution can be time-consuming, expensive and prone to errors
- Instead, we would like to have a model of the real-world
- Represent our understanding of the real world
- Incorporate assumptions and simplifications
- Tradeoff between tractable and valid
- A useful paradigm is Mathematical Programming, where we write in mathematical equations
- Objective(s)
- Constraint(s)
- All with respect to certain variables

$$
\begin{aligned}
& \quad \min _{x} f(x) \\
& \text { s.t. } g(x) \leq 0
\end{aligned}
$$

USRA Universities Space Research Association

Operations Research approach

- Define the problem
- Formulate the model
- Requirements
- Simplifications

$$
\begin{gathered}
\min _{x} f(x) \\
\text { s.t. } g(x) \leq 0
\end{gathered}
$$

- Assumptions
- Solve / Analyze the model
- Interpret the results
- All steps are vital to provide a solution!

USRA Universities Space Research Association

Simple example

Let's propose a production plan that increases the profit of a company!
... we need more data than that.

The company only produces a finite set of products and each has its price. Besides, there are some production limitations.

To propose a model of this situation we need to identify certain key aspects of the problem.

- What are relevant parameters or data?
- Which decisions can we make? What is unknown? What is controllable?
- What limitations are relevant? What determines how a solution is valid (feasibility)?
- What is our goal?

Once those are clear, we can propose a model.

USR
Universities Space Research Association

Simple example

After addressing those questions we reach the following problem statement.

Suppose there is a company that produces two different product, A and B, which can be sold at different values, $\$ 5.5$ and $\$ 2.1$ per unit, respectively.
The company only counts with a single machine with electricity usage of at most $17 \mathrm{~kW} /$ day; and producing each A and B consumes $8 \mathrm{~kW} /$ day and $2 \mathrm{~kW} /$ day, respectively.
Besides, the company can only produce at most 2 more units of A than B per day.

This is a valid model, but it would be easier to solve if we had a mathematical representation.
Assuming the units produced of A are x_{1} and of B are x_{2} we have
$\max 5.5 x_{1}+2.1 x_{2}$
$-x_{1}+x_{2} \leq 2$
$8 x_{1}+2 x_{2} \leq 17$
$x_{1}, x_{2} \geq 0$
[1] Adapted from Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

Linear Programming

A simplification of the general model presented before assumes that all the constraints and objective are linear, and the variables are continuous

$$
\begin{aligned}
& \min _{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x} \\
& \text { s.t. } \mathbf{A x} \leq \mathbf{b}
\end{aligned}
$$

The feasible region of a Linear Program (LP) is a convex polyhedron

$$
\begin{array}{cl}
\max & 5.5 x_{1}+2.1 x_{2} \\
-x_{1}+x_{2} & \leq 2 \\
8 x_{1}+2 x_{2} & \leq 17 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Interior-point methods

- Path through interior of polytope
- Polynomial time

Simplex methods

- Vertex hopping
- (Worst-case) Exponential time

Most solvers use simplex!

- 1 e 7 variables is tractable!

Simplex (overview)

Linear Programming

Modeling and Simplex method

Let's jump to the code!
https://colab.research.google.com/github/bernalde/QuIPML/blob/main/notebooks/Noteboo k\%201\%20-\%20LP\%20and\%20IP.ipynb

Interior-point (brief overview)

- More details to it but the basics
- Intuition: starting from a feasible point, we approach the edges by having a monotonic barrier when close.
- Synonyms: Barrier method
- Not very efficient at restart
- Very useful when problems are dual degenerate

TTEPPER

Linear Programming

Interior point method

Back to the code!
https://colab.research.google.com/github/bernalde/QuIPML/blob/main/notebooks/Noteboo k\%201\%20-\%20LP\%20and\%20IP.ipynb

Duality (very brief overview)

$$
\begin{aligned}
& \min _{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x} \\
& \text { s.t. } \mathbf{A x}=\mathbf{b} \\
& \mathbf{x} \geq 0 \\
& \mathbf{x} \in \mathbb{R}^{n}
\end{aligned}
$$

The Lagrangian function $\mathcal{L}(\lambda)$ (with deep meaning in classical mechanics and the least energy principle) defines a lower bound on our optimization problem, so we maximize it

$$
\begin{array}{r}
\max _{\lambda} \mathcal{L}(\lambda)=\max _{\lambda} \lambda^{\top} \mathbf{b} \\
\text { s.t. } \lambda^{\top} \mathbf{A} \leq \mathbf{c}^{\top}
\end{array}
$$

$$
\begin{aligned}
& \min _{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}+\lambda^{\top}(\mathbf{b}-\mathbf{A} \mathbf{x}) \\
& \text { s.t. } \mathbf{x}
\end{aligned} \quad \geq 0 \quad \text { Lagrangian or dual multipliers } ~=~ \begin{aligned}
\mathcal{L}(\lambda) & =\min _{\mathbf{x} \geq 0} \mathbf{c}^{\top} \mathbf{x}+\lambda^{\top}(\mathbf{b}-\mathbf{A} \mathbf{x}) \\
& =\lambda^{\top} \mathbf{b}+\min _{\mathbf{x} \geq 0}\left(\mathbf{c}^{\top}-\lambda^{\top} \mathbf{A}\right) \mathbf{x} \\
& =\lambda^{\top} \mathbf{b}+\left\{\begin{array}{cc}
0, & \text { if } \mathbf{c}^{\top}-\lambda^{\top} \mathbf{A} \geq \mathbf{0}^{\top} \\
-\infty, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

For LPs (and in general convex problems) the following holds:

Strong duality: $\lambda^{* \top} \mathbf{b}=\mathbf{c}^{\top} \mathbf{x}^{*}$

LP - State of the art

Simplex LP solvers

```
26 Jul 2021
Benchmark of Simplex LP solvers
\(==============================\)
H. Mittelmann (mittelmann@asu.edu)
```

Logfiles of these runs at: plato.asu.edu/ftp/lp_logs/
This benchmark was run on a Linux-PC (i7-11700K, 3.6GHz, 64GB)
The MPS-datafiles for all testcases are in one of (see column "s")
miplib2010.zib.de/ [1]
plato.asu.edu/ftp/lptestset/ [2]
www.netlib.org/lp/data/ $[3,7]$
www.sztaki.hu/~meszaros/public_ftp/lptestset/ (MISC[4], PROBLEMATIC[5], STOCHLP[6], INFEAS[8])

NOTE: some files in [2-8] need to be expanded with emps in same directory!
The simplex methods were tested of the codes:

MOSEK-9.2.47
CLP-1.17.6
Google-GLOP
SOPLEX-5.0.2
Gurobi-9.1
MLPK-5.0
MATLAB-R2020b
COPT-2.0.0
MindOpt-0.14.0

www. mosek.com
 projects.coin-or.org/Clp
 LP with Glop
 soplex.zib.de/
 Gurobi

www.gnu.org/software/glpk/glpk.html mathworks.com (dual-simplex)
COPT
Unscaled and scaled shifted (by 10 sec) geometric mean of runtimes

	307	148	475	768	36.5	2504	905	24.3	20.4
	15.0	7.24	23.3	37.6	1.79	123	44.3	1.11	1
solved	38	40	32	36	40	29	32	40	40
40 probs	MSK	CLP	GLOP	SPLX	Gurob	GLPK	MATL	COPT	MDOPT

Barrier LP Solvers

24 Aug $2021 \begin{gathered}============================== \\ \\ \text { Benchmark of Barrier LP solvers } \\ =============================\end{gathered}$
H. Mittelmann (mittelmann@asu.edu)

Logfiles of these runs at: plato.asu.edu/ftp/lp_logs/
This benchmark was run on a Linux-PC (i7-11700K, 3.6GHz, 64GB)
The MPS-datafiles for all testcases are in one of (see column "s")
miplib2010.zib.de/ [1]
plato.asu.edu/ftp/lptestset/ [2]
www.netlib.org $/$ lp/data/ $[3,7]$
www.sztaki.hu/~meszaros/public_ftp/lptestset/
(MISC[4], PROBLEMATIC[5], STOCHLP[6], INFEAS[8], NEW[9])
NOTE: Most files in [2-9] need to be expanded with emps in same directory!
The barrier methods were tested of:
MOSEK-9.2.47 www.mosek.com
MATLAB-R2020b mathworks.com (interior-point, NO CROSSOVER!)
Gurobi-9.1.2 Gurobi
CLP-1.17.6 projects.coin-or.org/Clp
Tulip-0.8.0 Tulip (NO CROSSOVER!)
COPT-2.0.1 COPT
KNITRO-12.4.0 www.artelys.com/knitro/ (NO CROSSOVER)
Unscaled and scaled shifted (by 10 sec) geometric mean of runtimes

	41.4	493	14.4	714	474	10.5	17.9	143
46 probs	3.94	47.0	1.37	68.0	45.2	1	1.71	13.7
solved	45	36	46	38	36	46	46	40
problem	MOSEK	matlab	Gurobi	CLP	TULIP	COPT	MDOPT	KNITRO

TTEPPER

LP - State of the art

Previous results with 45 problems with $\sim 205 \mathrm{k}$ constraints, $\sim 225 \mathrm{k}$ variables and $\sim 2.5 \mathrm{M}$ nonzeros.
The usual density of LP problems (in this case $\sim 0.005 \%$ in average) is very low!
Best performing solvers used to be IBM CPLEX, FICO XPRESS and GUROBI

- They are not included in the benchmarks because of an incident in 2018
- but now, new players are in the arena!

Simple example - Continued

We found that the optimal solution was to produce 3.3 units of $\mathrm{B}, 1.3$ units of A , and that would yield a profit of \$14.08.

But what if we can only produce an integer number of products?
We modify our formulation to include this new information.

$$
\begin{gathered}
\text { max } 5.5 x_{1}+2.1 x_{2} \\
-x_{1}+x_{2} \leq 2 \\
8 x_{1}+2 x_{2} \leq 17 \\
x_{1}, x_{2} \geq 0 \\
x_{1}, x_{2} \text { integer }
\end{gathered}
$$

The feasible region is no longer convex!

[1] Adapted from Integer Programming (1st eḍ̀ 12014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

Modeling non-convexities

The real-world is often abrupt, unexpected, sudden, discontinuous, non-smooth, ...
This is the point where (Mixed-)Integer Programming comes into play!

$$
\begin{gathered}
\min _{\mathrm{x}} f(x) \\
\text { s.t. } g(x) \leq 0 \\
\text { some or all } x_{i} \text { are integer }
\end{gathered}
$$

Integer Programming can be understood as the universal tool for modeling non-convexities and discontinuities

- Integrality condition may arise from indivisibility (people, objects)
- But it also can be used as a "trigger" or "switch"
- Logical conditions such as disjunctions, implications, precedence can be modeled using this tool
- This is applicable to all areas of decision-making
- ubiquitous, omnipresent [1]

Enumerating

How hard can it be just to look at all the possible values, checking if they satisfy the constraints (being feasible) and comparing their objective function?

- Assuming only binary variables, the number of solutions grows as 2^{n}
- Many problems actually deal with permutations (assignments) therefore the number of solutions grow as n !

[1] Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

(Mixed-)Integer Programming

Solution and Enumeration

Back to the code!
https://colab.research.google.com/github/bernalde/QuIPML/blob/main/notebooks/Noteboo k\%201\%20-\%20LP\%20and\%20IP.ipynb

(Mixed-)Integer Programming

A Mixed-Integer Program (MIP) is an optimization problem of the form

$$
\begin{aligned}
& \quad \min _{\mathrm{x}} f(x) \\
& \text { s.t. } g(x) \leq 0
\end{aligned}
$$

some or all x_{i} are integer
Main concern is that is a strongly NP-complete problem

Branch-and-bound

- Solution of each search node using linear programming

Cutting plane methods

- Polyhedral theory

Enhanced with constraint programming methods

- Logic inference
- Domain reduction

Each node in branch-and-bound is a new MIP
[1] https://www.ferc.gov/CalendarFiles/20100609110044-Bixby,\ Gurobi\ Optimization.pdf
[2] R. Kannan and C. L. Monma, On the computational complexity of integer programming problems, vol. 157, Springer-Verlag, 1978, pp. 161-172. [3] https://www.slideshare.net/IBMOptimization/2013-11-informs 12yearsofprogress

TTEPPER

(Mixed-)Integer Programming

$$
\begin{array}{ccl}
\max & 5.5 x_{1}+2.1 x_{2} & \\
& -x_{1}+\quad x_{2} \leq 2 \\
& 8 x_{1}+2 x_{2} \leq 17 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer }
\end{array}
$$

Branch-and-bound

Cutting-plane methods

[1] Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

(Mixed-)Integer Programming

-Speedup between CPLEX 1.2 (1991) and CPLEX 11 (2007): 29,000 times
-Gurobi 1.0 (2009) comparable to CPLEX 11

- Speedup between Gurobi 1.0 and Gurobi 8.0 (2018): 91 times
-Total speedup 1991-2018: 2'600,000 times

- A MIP that would have taken 30 days to solve 27 years ago can now be solved in the same 25 -year-old computer in less than one second
-Hardware speed: 122.3 Pflops/s in 2018 vs. 59.7 Gflops/s in $19932^{\circ} 000,000$ times
-Total speedup: 5.4 trillion times!
-A MIP that would have taken 171,000 years to solve 27 years ago can now be solved in a modern computer in less than one second

(Mixed-)Integer Programming

Where is the improvement coming from?

Feature	Speedup facto
Preprocessing	5
Branching variable selection	11
Heuristics	
Cut type	Speedup factor
Gomory mixed integer	2.5
Mixed integer rounding	1.8
Knapsack cover	1.4
Flow cover	1.2
Implied bounds	1.2
Path	1.04
Clique	1.02
GUB cover	1.02

[1] Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli

TTEPPER

(M)IP State of the art

Benchmark coming from MIPlib 2017, a 1065 collection of challenging MIPs that ranging from 1 to 19 M of constraints and from 3 to 38 M of variables.

Best commercial solvers are currently IBM CPLEX, FICO XPRESS and GUROBI.

- Focus on parallelization has been a center of research with many open questions there (usage of GPUs is not trivial for these algorithms)

The benchmark instances of MIPLIB2017 have been run by a number of codes. For pre-INFORMS2018 results see here
The following codes were run with a limit of 2 hours on two platforms.
1 thread: Intel i7-4790K, 4 cores, $32 \mathrm{~GB}, 4 \mathrm{GHz}$; 8 threads: Intel $\mathrm{i} 7-11700 \mathrm{~K}, 8$ cores, $64 \mathrm{~GB}, 3.6 \mathrm{Ghz}$;
CBC-2.10.5: CBC
COPT-2.0.1: \triangle
GLPK-5.0: www.gnu.org/software/glpk/glpk.html
LP_SOLVE-5.5.2: Ipsolve.sourceforge.net
MATLAB-2020a: MATLAB (intlinprog)
(F)SCIP/spx-7.0.0: (Fiber)SCIP

Gurobi-9.1.0 Gurobi
Table for single thread, Result files per solver, Log files per solver
Table for 8 threads, Result files per solver, Log files per solver

位
Unscaled and scaled shifted geometric means of run times

The third line lists the number of problems (240 total) solved

1 thr	CBC	GLPK	LP_SOL	MATLAB	SCIP	Gurobi	COPT
unscal	2107	5044	5335	3301	1100	245	1029
scaled	8.59	20.5	21.7	13.5	4.48	1	4.19
solved	89	23	20	63	125	201	132

Due to wide availability of multi-cores this benchmark will not be updated

8 thr	CBC	FSCIP	Gurobi	COPT
unscal	1328	794	100	538
scaled	13.3	7.98	1	5.41
solved	107	146	225	164

ISRA Universities Space Research Association

Modeling the real-world

The real-world is apart of abrupt, nonlinear!

$$
\begin{gathered}
\min _{\mathrm{x}} f(x) \\
\text { s.t. } g(x) \leq 0 \\
\text { some or all } x_{i} \text { are integer }
\end{gathered}
$$

Although we can model discontinuities with integer variables, we can summarize more information using nonlinear constraints and objectives

- Assumption that $f(\mathbf{x})=\mathbf{c}^{\top} \mathbf{x}, g(\mathbf{x})=\mathbf{A x}-\mathbf{b}$ does not hold in general - This only makes our problem harder

[1] https://www.vox.com/2018/4/28/17292244/flat-earthers-explain-philosophy

(Mixed-)Integer Nonlinear Programming

So far, we have only discussed linear constraints and objective(s), but nonlinearity is key to modeling.

Representation of Turing Machine ${ }^{1}$
"Most industrial processes can be formulated as MINLP. Its expressive power is remarkable: it can encode any Turing Machine, including universal ones, such as Minsky's Recording Machine, which means that every problem can be formulated as a MINLP*."

- L. Liberti, Mathematical Programming. 2017

MINLP is NP-Hard since:

$$
\mathrm{SAT} \rightarrow \mathrm{BIP} \subset \mathrm{ILP} \subset \mathrm{MILP} \subset \mathrm{MINLP}
$$

- Theorem 3 in Liberti, L. and Martinelli, F. "Mathematical programming: Turing completeness and applications to software analysis". 2014
- Problem 2, main Theorem in Karp, R.M. "Reducibility Among Combinatorial Problems". 1972

URRA Universities Space Research Association

(Mixed-)Integer Nonlinear Programming

Branch-and-bound methods

Actual BB Tree after 360s w/o preprocessing ($\sim 100 \mathrm{k}$ nodes)
(M)I Linear Programming based methods

Underestimate of objective function

$\not(\Varangle)$ Electrical\& Computer
T TEPPER

Simple example - Continued

We found that the optimal solution of the IP was to produce 1 unit of A, and 3 units of B, and that would yield a profit of $\$ 11.8$.

But what if we include an extra constraint, where the production of B minus 1 , squared, can only be smaller than 2 minus the production of A

$$
\begin{gathered}
\max _{x_{1}, x_{2}} 5.5 x_{1}+2.1 x_{2} \\
\text { s.t. } x_{2} \leq x_{1}+2 \\
8 x_{1}+2 x_{2} \leq 17 \\
\hline\left(x_{2}-1\right)^{2} \leq 2-x_{1} \\
\hline x_{1}, x_{2} \geq 0 \\
x_{1}, x_{2} \in \mathbb{Z}
\end{gathered}
$$

The feasible region of the continuous relaxation is convex

Convex (Mixed-)Integer Nonlinear Programming

Solution

Back to the code!
https://colab.research.google.com/github/bernalde/QuIPML/blob/main/notebooks/Noteboo k\%201\%20-\%20LP\%20and\%20IP.ipynb

Convex (M)INLP State of the art

Complexity boundary does not lie between linearity and nonlinearity
But between convexity and non-convexity.
Convex (M)INLP problems are more challenging but manageable
Benchmark from 335 problems with ~ 1000 variables and constraints in average

Branch-and-bound methods

(M)ILP based methods

[^0] for convex MINLP', Optimization and Engineering pp. 1-59

TTEPPER

Simple example - Final version

We found that the optimal solution of the convex INLP was to produce 1 unit of A , and 2 units of B , and that would yield a profit of \$9.7.

Finally, we include an extra constraint, where the production of B minus 1, squared, can only be greater than $1 / 2$ plus the production of A

$$
\begin{gathered}
\max _{x_{1}, x_{2}} 5.5 x_{1}+2.1 x_{2} \\
\text { s.t. } x_{2} \leq x_{1}+2 \\
8 x_{1}+2 x_{2} \leq 17 \\
\left(x_{2}-1\right)^{2} \leq 2-x_{1} \\
\hline\left(x_{2}-1\right)^{2} \geq 1 / 2+x_{1} \\
\hline x_{1}, x_{2} \geq 0 \\
x_{1}, x_{2} \in \mathbb{Z}
\end{gathered}
$$

The feasible region of the continuous relaxation is convex!!!

TTEPPER

Non-Convex (Mixed-)Integer Nonlinear Programming

Solution

Back to the code!
https://colab.research.google.com/github/bernalde/QuIPML/blob/main/notebooks/Noteboo k\%201\%20-\%20LP\%20and\%20IP.ipynb

Nonconvex (M)NLIP State of the art

Benchmark coming from MINLPLib with instances with ~ 2500 variables and constraints.

BARON is the most performant solver with a geometric mean time to solve these instances of ~ 300 seconds.

Classical (M)IP solvers are increasing their capabilities to deal with nonlinearities
 Mixed Integer Nonlinear Programming Benchmark (MINLPLIB)
H. Mittelmann (mittelmann@asu.edu)

The following codes were run through GAMS-36.1.0 with a limit of 2 hours on these instances from MINLPLIB and with one thread on an Intel i7-11700K, 64GB, 3.6GHz.

Description of selection process of benchmark instances. Statistics of the instances.
ANTIGONE, BARON, LINDO, SCIP
Table for all solvers, Result files per solver, Log files per solver, Trace files per solver, Error files per solver

Scaled and shifted geometric means of run times
Feasibility tolerance set to le-6. All non-successes are counted as max-time The second line lists the number of problems (87 total) solved.

The shifted geometric mean is computed on the 69 instances for which no solver failed.

	ANTIGONE	baron	LINDO	SCIP
geom mean	4.17	1	5.93	2.06
solved	53	63	29	55

- IBM CPLEX can solve problems with convex quadratic constraints
- FICO XPRESS can solve nonlinear programs through linearization
- GUROBI can solve non-convex quadratic and bilinear programs
[1] http://plato.asu.edu/bench.html [2] http://minlplib.org

Complexity introduction

When analyzing an algorithm, we are interested in the amount of time and memory that it will take to solve it.

- To be safe this is usually answered in the worst-case scenario
- The discussion here will be mainly the time complexity of algorithms.
- We will use the "big-O" notation when given two functions $f: S \rightarrow \mathbb{R}_{+}, g: S \rightarrow \mathbb{R}_{+}$, where S is an unbounded subset of \mathbb{R}_{+}we write that if there exists a positive real number M and $x_{0} \in S$ such that $f(x) \leq M g(x)$ for every $x>x_{0}$ then $f(x)=O(g(x))$
- For us S is going to be the set of instances or problems, and an algorithm is a procedure that will give a correct answer is a finite amount of time.
- An algorithm solves a problem in polynomial time if the function that measures its arithmetic operations $f: S \rightarrow \mathbb{R}_{+}$is polynomially bounded by the function encoding the size of the problem $g: S \rightarrow \mathbb{R}_{+}$

USR

Complexity introduction

- If there exists an algorithm that solves a problem in polynomial time, then that problem belongs to the complexity class P
- For example LP belongs to P because the interior point algorithm solves it in poly-time
- A decision problem is one with answer "yes" or "no"
- The complexity class NP, non-deterministic polynomial, is the class of all decision problems where the "yes"answer can be verified in poly-time
- If all the decision problems in NP can be reduced in poly-time to a problem Q, then Q is said to be NP-complete
- "Is a (mixed-)integer linear set empty?" belongs to NP and is actually NP-complete

USRA

Complexity introduction

- A problem Q can be called NP-hard if all problems in NP can be reduced to Q in poly-time
- Integer Programming is NP-hard
- Since we can transform any NP problem into an integer program in poly-time, if there exists an algorithm to solve IP in poly-time, then we can solve any NP problem in poly-time: $\mathrm{P}=\mathrm{NP}$
- Integer programs with quadratic constraints are proved to be undecidable
- Even after a long time without finding a solution, we cannot conclude none exists...
- MINLP are tough!

Complexity introduction

- A problem is said to belong to the complexity class BPP, bounded-error probabilistic polynomial time, if there is an algorithm that solves it such that
- It is allowed to flip coins and make random decisions
- It is guaranteed to run in polynomial time
- On any given run of the algorithm, it has a probability of at most $1 / 3$ of giving the wrong answer, whether the answer is YES or NO.
- There exists another complexity class called BQP, bounded-error quantum polynomial time, which is the quantum analogue of BPP
- We hope that some problems belong to BQP and not to BPP to observe Quantum Advantage
- E.g., Integer factorization

[1] Michael Nielsen and Isaac Chuang (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. ISBN 0-521-63503-9.

Take home message

Integer Programs lie at a very special intersection since they are:

- Interesting from an academic point of view
- Useful from a practical point of view
- Challenging from a computational point of view

We do not expect to observe Quantum Advantage by solving Integer Programs using Quantum Computers (but who knows right? Maybe $\mathrm{P}=\mathrm{BPP}=\mathrm{BQP}=\mathrm{NP}$)

We are still dealing with complicated problems that require answers, so we are going to try our best to solve them.

Welcome to Quantum Integer Programming!

37

More thoughts

Slide taken from Ed Rothberg (key developer of CPLEX and the RO in guRObi) on a talk of parallelization for (M)IP

URA Universities Space Research Association

[^0]: [1] Kronqvist, J., Bernal, D. E., Lundell, A. and Grossmann, I.E. [2018], 'A review and comparison of solvers

