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Carnegie Mellon University

Constrained Optimization Models

o Exploration of real-world, looking for optimal solution can be time-consuming, expensive and prone to

errors
e Instead, we would like to have a model of the real-world
o Represent our understanding of the real world
o Incorporate assumptions and simplifications
o Tradeoff between tractable and valid
o A useful paradigm is Mathematical Programming, where we write in mathematical equations
o Objective(s)
o Constraint(s)
m All with respect to certain variables

mhjn f(x)

s.t.g(x) <0
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Operations Research approach

o Define the problem
e Formulate the model min f(x)
X

o Requirements —
s.t.g(x) <0

o Simplifications
o Assumptions
e Solve/ Analyze the model

e Interpret the results

» All steps are vital to provide a solution!
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Simple example

Let’s propose a production plan that increases the profit of a company!
... we need more data than that.

The company only produces a finite set of products and each has its price. Besides, there are some production
limitations.

To propose a model of this situation we need to identify certain key aspects of the problem.
o What are relevant parameters or data?
o Which decisions can we make? What is unknown? What is controllable?
o What limitations are relevant? What determines how a solution is valid (feasibility)?
o What is our goal?

Once those are clear, we can propose a model.
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Simple example

After addressing those questions we reach the following problem statement.

Suppose there is a company that produces two different product, A and B, which can be sold at different values, $5.5 and
$2.1 per unit, respectively.

The company only counts with a single machine with electricity usage of at most 17kW/day; and producing each A and B
consumes 8kW/day and 2kW/day, respectively.

Besides, the company can only produce at most 2 more units of A than B per day.

This is a valid model, but it would be easier to solve if we had a mathematical representation.
Assuming the units produced of A are 1 and of B are T2 we have

max 5H.0x1+2.1xa

—Ty+ X9 <2
r | =
R | T 214 < 17
4 1,4 ..i"_:" -i {] [1] Adapted from Integer Programming (1st ed. 2014) by

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
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Linear Programming

A simplification of the general model presented
before assumes that all the constraints and objective
are linear, and the variables are continuous

min, ¢ ' x

s.t.Ax <Db

The feasible region of a Linear Program (LP) is a
convex polyhedron

max 5H.0r1+2.1xs

-1+ I <2
8z,+ 2ry < 17
r1, a2 = 0
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— xz=x1t2
Bar+ 2x: =17
—_— xzz D
— x120
@ optimal solution LP

e Path through interior of polytope

e Polynomial time
Simplex methods
e Vertex hopping

e (Worst-case) Exponential time
Most solvers use simplex!

e Jle7 variables is tractable!

<y TEPPER

[1] Adapted from Integer Programming (1st ed. 2014) by

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
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Simplex (overview)

miny c'x 1. Write the “simplex tableau”
s.t.. Ax=Db 2. Convert to canonical form (select basis)
x > () 3. “Price out” basic variables
x € R” 4. If solution can be improved, we pivot (swap
basic and non-basic variables)

@ Can efficiently restart from any feasible solution

1 — CT 0 Relative costs Objective value
— <

0 A b

a 1 0 —(_:]\_7 ZB
[ 1 _C]—; _C]—(T 0 ] % _ 0 ,I D —~ b Basic variables

Non-basic variables values
O I D b Basic variables (rsaned =

[1] Adapted from Integer Programming (1st ed. 2014) by
Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
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Linear Programming

Modeling and Simplex method

Let’s jump to the code!
https://colab.research.gooqgle.com/github/bernalde/QuliPML/blob/main/notebooks/Noteboo

k96201%20-%20LP%20and%20IP.ipynb
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https://colab.research.google.com/github/bernalde/QuIPML/blob/main/notebooks/Notebook%201%20-%20LP%20and%20IP.ipynb

Electrical & Computer

More details to it but the basics

Intuition: starting from a feasible point, we
approach the edges by having a monotonic
barrier when close.

Synonyms: Barrier method

Not very efficient at restart

Very useful when problems are dual
degenerate

What is duality?

ENGINEERING

Carnegie Mellon University

Interior-point (brief overview)

U.S. Patent  May 10, 1988 Sheet 1 of 5 4,744,028

[1] Adapted from Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
[2] https://en.wikipedia.org/wiki/Karmarkar%?27s_algorithm

A | ’ T E P P E R l@ Universities Space Research Association 10



Carnegie Mellon University

Linear Programming

Interior point method

Back to the code!
https://colab.research.google.com/github/bernalde/QulPML/blob/main/notebooks/Noteboo

k96201%20-%20LP%20and%20IP.ipynb
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Duality (very brief overview)

-

miny ¢’ X min, c' x + A’ (b — Ax)
_ S~
s.t.Ax=Db s.t.x >0 . "y
x > 0 Lagrangian or dual multipliers
x € R" L(A) = m>i%)1 c'x+ ' (b-Ax)
Xz
. ; . . T . T T
The Lagrangian function £(A) (with deep meaning =A b+ 1;1{1;{]1(‘3 — A A)x
|n_ c_IassmaI njechanlcs and the least energy . 0, ifc’ —ATA>0"
principle) defines a lower bound on our =X'b+{ ,
. . —00, otherwise
optimization problem, so we maximize it _
For LPs (and in general convex problems) the
max £()) = max A'b following holds:
st ATA<c' Strong duality: A* ' b = ¢ x*
Miehele Confort, Gérard Cormuéials, and Giacomo Zambel
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LP — State of the art

Simplex LP solvers

26 Jul 2821 —=================================

Q©

H. Mittelmann (mittelmann@asu.edu)

Logfiles of these runs at: plato.asu.edu/ftp/lp_logs/

This benchmark was run on a Linux-PC (17-11700K, 3.6GHz, 64GB).
The MPS-datafiles for all testcases are in one of (see column "s")

miplibh2010.zib.de/ [1]
plato.asu.edu/ftp/lptestset/ [2]
www.netlib.org/lp/data/ [3,7]
www.sztaki.hu/~meszaros/public_ftp/lptestset/

(MISC[4], PROBLEMATIC[5], STOCHLP[6], INFEAS[8])

NOTE: some files in [2-8] need to be expanded with emps in same directory!

The simplex methods were tested of the codes:

MOSEK-9.2.47 Wi . mosek. com

CLP-1.17.6 projects.coin-or.org/Clp
Google-GLOP LP with Glop
SOPLEX-5.8.2 soplex.zib.de/
Gurobi-9.1.2 Gurobi

GLPK-5.9@ www.gnu.org/software/glpk/glpk.html
MATLAB-R20828b  mathworks.com (dual-simplex)
COPT-2.8.0 COPT

MindOpt-90.14.0 MindOpt

Unscaled and scaled shifted (by 1@ sec) geometric mean of runtimes

307 148 475 768 | 36.5 | 2504 ges [ 24.3 20.4
15.e 7.24 23.3 37.6 | 1.79 123 44.3 | 1.11 1
solved 38 40 32 36 49 29 32 49 40
40 probs MSK CLP GLOP SPLX |Gurob | GLPK MATL | COPT MDOPT

Electrical & Computer q
ENGINEERING vy TEPPER

24 pug 2021 = S - e

Logfiles of these runs at: plato.asu.edu/ftp/lp_logs/

This benchmark was run on a Linux-PC (17-11700K, 3.6GHz, 64GB).
The MPS-datafiles for all testcases are in one of (see column "s")

miplib201@.zib.de/ [1]

plato.asu.edu/ftp/lptestset/ [2]
www.netlib.org/lp/data/ [3,7]
www.sztaki.hu/~meszaros/public_ftp/lptestset/

(MISC[4], PROBLEMATIC[5], STOCHLP[6], INFEAS[8], NEW[9])

NOTE: Most files in [2-9] need to be expanded with emps in same directory!

The barrier methods were tested of:

MOSEK-9.2.47 www . mosek. com
MATLAB-R2820b mathworks.com (interior-point, NO CROSSOVER!)
Gurobi-9.1.2 Gurobi

CLP-1.17.6 projects.coin-or.org/Clp
Tulip-8.8.@  Tulip (NO CROSSOVER!)
COPT-2.8.1 COPT

MindOpt-@.14.0 MindOpt
KNITRO-12.4.8 www.artelys.com/knitro/ (NO CROSSOVER)

Unscaled and scaled shifted (by 10 sec) geometric mean of runtimes

41.4 493 14.4 714 474 18.5 17.9 143
46 probs 3.94 47.@ 1.37 68.09 45.2 1 1.71 13.7
solved 45 36 46 38 36 46 45 4@
problem MOSEK MATLAB [Gurobi CLP TULIP COPT  MDOPT| KNITRO
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LP — State of the art

Previous results with 45 problems with ~205k constraints, ~225k variables and ~2.5M nonzeros.
The usual density of LP problems (in this case ~0.005% in average) is very low!

Best performing solvers used to be IBM CPLEX, FICO XPRESS and GUROBI
e They are not included in the benchmarks because of an incident in 2018
e but now, new players are in the arena!

Benchmark of Simplex LP solvers
shift il ratios (shift=10 seconds) using Gurobi-9.1.2 as base solver (26 Jul 2021) - mattmilten.github.io/mittelmann-plots

(W)a: (base) solver failed to selve within the time limit
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: no solution s
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Difference compared against Gurobi (s)

[1] http://plato.asu.edu/talks/euro2019.pdf
[2] https://mattmilten.github.io/mittelmann-plots/

instances sorted by solving Gura;r? 1; o ka(k{{:a%( o
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Simple example - Continued

Carnegie Mellon University

We found that the optimal solution was to produce 3.3 units of B, 1.3 units of A, and that would yield a

profit of $14.08.

But what if we can only produce an integer number of products?
We modify our formulation to include this new information.

max 5.9x1+2.1xo
—I1t+ I9
Sri+ 2rg

1, 2 = 0

T1, T2 integer

|M T

= b

The feasible region is no longer convex!

ectrical & Computer
 ENGINEERING
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optimal solution LP
integer points
optimal solution ILP
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[1] Adapted from Integer Programming (1st e§12014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
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Modeling non-convexities

The real-world is often abrupt, unexpected, sudden, discontinuous, non-smooth, ...
This is the point where (Mixed-)Integer Programming comes into play!

min f(x)
X
s.t.g(x) <0
some or all x; are integer

Integer Programming can be understood as the universal tool for modeling non-convexities and
discontinuities
- Integrality condition may arise from indivisibility (people, objects)
- But it also can be used as a “trigger” or “switch”
— Logical conditions such as disjunctions, implications, precedence can be modeled using this tool
This is applicable to all areas of decision-making
— ubiquitous, omnipresent [1]

[1] Adapted from Egon Balas’ lecture on Integer Programming
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Enumerating

Carnegie Mellon University

How hard can it be just to look at all the possible values, checking if they satisfy the constraints (being
feasible) and comparing their objective function?
e Assuming only binary variables, the number of solutions grows as 2"
e Many problems actually deal with permutations (assignments) therefore the number of solutions grow as 7!

10144 4

1u125 i

=

=
=
=}
&h

1037 4

1068

Possible solutions

1049 -
103{] -

1011 4

1 === atoms in the universe

— 2T

— !
=== nsinayear
=== age of the universe in ns

ectrical & Computer
 ENGINEERING

0 20 40 60 80 100

[1] Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
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(Mixed-)Integer Programming

Solution and Enumeration

Back to the code!

https://colab.research.google.com/github/bernalde/QulPML/blob/main/notebooks/Noteboo
k96201%20-%20LP%20and%20IP.ipynb
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https://colab.research.google.com/github/bernalde/QuIPML/blob/main/notebooks/Notebook%201%20-%20LP%20and%20IP.ipynb

Carnegie Mellon University

(Mixed-)Integer Programming

A Mixed-Integer Program (MIP) is an optimization
problem of the form

min f(x)
X
s.t.g(x) <0
some or all x; are integer

Main concern is that is a strongly NP-complete
problem

Stacks

3
3

i

! Add + .
‘ the Right
 Pinitial Constrants 1 _ 7
3 - » 3 Pf'. I
1 ll ’- a
4 "l T b i i okt By

Branch-and-bound
- Solution of each search node using linear
programming
Cutting plane methods
- Polyhedral theory
Enhanced with constraint programming methods
- Logic inference
- Domain reduction

Branch-and-Bound

Each node in branch-and-bound is a new MIP

[1] https://www.ferc.gov/CalendarFiles/20100609110044-Bixby,%20Gurobi%200ptimization.pdf
[2] R. Kannan and C. L. Monma, On the computational complexity of integer programming problems, vol. 157, Springer-Verlag, 1978, pp. 161-172.

[3] https://www.slideshare.net/IBMOptimization/2013-11-informs12yearsofprogress
N 19
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(Mixed-)Integer Programming

max d.9r1+2.1x2

r1, T2 integer

Branch-and-bound

I = 13 Ty = 3.3
= 14.08

e —

Prune by integrality rg = 1

I E/
Iy = 2125 Iy = 0
z = 11.6875

Infeasible

Prune by bound Prune by infeasibility

€ ERGNEERRVG <y TEPPER

Cutting-plane methods

I $

3

Chutl

Cut2

I

[1] Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
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(Mixed-)Integer Programming

MIP Performance Improvements

*Speedup between CPLEX 1.2 (1991) and CPLEX 11 (2007): 29,000 Rl ]
times ' -

*Gurobi 1.0 (2009) comparable to CPLEX 11
*Speedup between Gurobi 1.0 and Gurobi 8.0 (2018): 91 times
*Total speedup 1991-2018: 2°600,000 times

Cumuatve Specd g

Vervion-1o-Version 3peedup

A MIP that would have taken 30 days to solve 27 years ago can now be solved in the same 25-year-old
computer in less than one second

*Hardware speed: 122.3 Pflops/s in 2018 vs. 59.7 Gflops/s in 1993 2°000,000 times
*Total speedup: 5.4 trillion times!

A MIP that would have taken 171,000 years to solve 27 years ago can now be solved in a modern
computer in less than one second

[1] https://www.ferc.gov/CalendarFiles/20100609110044-Bixby,%20Gurobi%200ptimization.pdf
[2] https://www.slideshare.net/IBMOptimization/2013-11-informs12yearsofprogress
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(Mixed-)Integer Programming

Where is the improvement coming from?

Feature Speedup factor
/ Cuts 54
Preprocessing 11 MIP Performance Improvements
: : . 1991-2010
Branching variable selection 3 — [7one3
Heuristics 1.5 . /X

&:> Cut type Speedup factor
2.5

Gomory mixed integer i i
. : . i,
Mixed integer rounding 1.8 i £
Knapsack cover 1.4 g -]
Flow cover 1.2 _
Implied bounds 1.2
Path 1.04 IR A WA T TN W
. CPLEX to Gurobi Version-to-Version Pairs
Clique 1.02
GUB cover 1.02

[1] Integer Programming (1st ed. 2014) by Michele Conforti,
Gérard Cornugjols, and Giacomo Zambelli
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(M)IP State of the art

Benchmark coming from MIPlib 2017, a 1065
collection of challenging MIPs that ranging from 1
to 19M of constraints and from 3 to 38M of
variables.

Best commercial solvers are currently IBM CPLEX,
FICO XPRESS and GUROBI.

e Focus on parallelization has been a center of
research with many open guestions there (usage
of GPUs is not trivial for these algorithms)

ectrical & Computer
 ENGINEERING
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MIPLIB2@17 Benchmark Instance
u

1@ Aug 2821 =
h

I m I

e T |

s
)

. Mittelmann (mittelmann@asu.ed

The benchmark instances of MIPLIB2017 have been run by a number of codes. For pre-INFORMS2018 results see here

The following codes were run with a limit of 2 hours on two platforms.
| thread: Intel i7-4790K, 4 cores, 32GB. 4GHz: 8 threads: Intel i7-11700K, 8 cores, 64GB, 3.6Ghz;

CBC-2.10.5: CBC

COPT-2.0.1: COPT

GLPK-5.0: www.gnu.org/software/glpk/glpk.html
LP_SOLVE-5.5.2: Ipsolve sourceforge.net/
MATLAB-2020a: MATT AB (intlinprog)
(F)SCIP/spx-7.0.0: (Fiber)SCIP

Gurobi-9.1.0 Gurobi

Table for single thread, Result files per solver, Log files per solver

Table for 8 threads, Result files per solver, Log files per solver

A
Unscaled and scaled shifted geometric means of run times

All non-successes are counted as max-time.

The third line lists the number of problems (248 total) solved.

1 thr CBC GLPK LP_SOL MATLAB SCIP Gurobi COPT
unscal 2187 5844 5335 3381 1168 245 1829
scaled 8.59 28.5 21.7 13.5 4.48 1 4.19
solved a9 23 209 63 125 201 132

8 thr CBC FSCIP Gurobi COPT
unscal 1328 794 100 538
scaled 13.3 7.98 1 5.41
solved 187 146 225 164
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Modeling the real-world

The real-world is apart of abrupt, nonlinear!

min f(x)
X
s.t.g(x) <0
some or all x; are integer

Although we can model discontinuities with integer variables, we can summarize more information using
nonlinear constraints and objectives

Assumption that f(x) = ¢"x, g(x) = Ax — b does not hold in general [EEECUE=Ige Reality

This only makes our problem harder

b

[1] https://www.vox.com/2018/4/28/17292244/flat-earthers-
explain-philosophy
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(Mixed-)Integer Nonlinear Programming

So far, we have only discussed linear constraints and “Most industrial processes can be formulated as MINLF. Its
-t : PRE : >Xpressive er is remarkable: it can encode any Turin
objective(s), but nonlinearity is key to modeling. CAPTESIIVG poWer 15 remdi , g
J ( )’ y y g Machine, including universal ones, such as Minsky s
Recording Machine, which means that every problem can be
Jormulated as a MINLP*.”
- L. Liberti, Mathematical Programming. 2017

MINLP 1s NP-Hard since:
SAT — BIP c ILP < MILP € MINLP

Representation of Turing Machine!

* Theorem 3 i Liberti, L. and Martmelli, F. “Mathematical programming: Turing
completeness and applications to software analysis”. 2014

* Problem 2, main Theorem in Karp, R M. “Reducibility Among Combinatorial
Problems”. 1972

[1] COSC 545 - Theory of Computation, Georgetown University. Retrieved from
http://people.cs.georgetown.edu/~cnewport/teaching/cosc545-spring14/ on 02/17/2019.
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(Mixed-)Integer Nonlinear Programming

Branch-and-bound methods (M)I Linear Programming based methods

f(x) L

Underestimate of Overestimate of the
objective function feasible region

Actual BB Tree after 360s w/o preprocessing (~100k nodes)

[1] Belotti, P., Kirches, C., Leyffer, S., S., Linderoth, J., Luedtke,
J., and Mahajan, A. “Mixed-integer nonlinear optimization” 2012
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Simple example - Continued

We found that the optimal solution of the IP was to produce 1 unit of A, and 3 units of B, and that would
yield a profit of $11.8.

But what if we include an extra constraint, where the production of B minus 1, squared, can only be smaller
than 2 minus the production of A
max d.0x; + 2.1x9

Il _,1-‘2

s.t.20 <31 + 2
8x1 + 239 < 17

(22 —1)2<2—xy

—_— Nz= X142
B\X1 + 2)‘.’2 =17
— xz=0
—_— 1z 0
[.7‘.'2 - 1]2 = 2 - Xl
@ optimal solution LP
& integer points
& optimal sclution ILF
& optimal selution convex INLP

Xz

ry,ro =0
xr,Ty € L
The feasible region of the continuous
relaxation is convex Miehele Confort, Gérad Cormuéiols. and Gncomo Zambeli
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Convex (Mixed-)Integer Nonlinear Programming

Solution

Back to the code!

https://colab.research.google.com/github/bernalde/QulPML/blob/main/notebooks/Noteboo
k96201%20-%20LP%20and%20IP.ipynb
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https://colab.research.google.com/github/bernalde/QuIPML/blob/main/notebooks/Notebook%201%20-%20LP%20and%20IP.ipynb

Carnegie Mellon University

Convex (M)INLP State of the art

Complexity boundary does not lie between linearity and nonlinearity

But between convexity and non-convexity.

Convex (M)INLP problems are more challenging but manageable

Benchmark from 335 problems with ~1000 variables and constraints in average

Branch-and-bound methods

O EREEERE <y TEPPER

AlphaECP - - - - -0A
Minotaur-QG —— Muriqui —— Pavito —— SHOT

[1] Krongvist, J., Bernal, D. E., Lundell, A. and Grossmann, 1. E. [2018], *A review and comparison of solvers
for convex MINLP', Optimization and Engineering pp. 1-59.
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Simple example - Final version

We found that the optimal solution of the convex INLP was to produce 1 unit of A, and 2 units of B, and that
would yield a profit of $9.7.

Finally, we include an extra constraint, where the production of B minus 1, squared, can only be greater than
1/2 plus the production of A

maxo.dx; + 2.1z — Xa=xi 42

Iy.I2 Bx, + 2xz =17
5.1.20 <x1 +2 — x=0
—_— =0

e —1PF=2-x
= 1F=x,+ 12

8x1 + 2xp < 17
(22 —1)2 <2

& optimal sclution LP
2 & integer points
(:Eg — 1) = 1;’2 + I e optimal solution ILP
& optimal solution convex INLP
m] 1 m? :_:} D & optimal solution nonconvex INLPF
x,Ty € 7

The feasible region of the continuous

re I axati O n iS CO nveX ! ! ! [1] Adapted from Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
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Non-Convex (Mixed-)Integer Nonlinear

Programming
Solution

Back to the code!
https://colab.research.google.com/github/bernalde/QulPML/blob/main/notebooks/Noteboo

k96201%20-%20LP%20and%20IP.ipynb
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Nonconvex (M)NLIP State of the art

Benchmark coming from MINLPLIib with instances
with ~2500 variables and constraints.

BARON is the most performant solver with a
geometric mean time to solve these instances of
~300 seconds.

Classical (M)IP solvers are increasing
capabilities to deal with nonlinearities

their

15 Aug 2021 ====== ===== ====== ====

H. Mittelmann (mittelmann@asu.edu)

The following codes were run through GAMS-36.1.0 with a limit of 2 hours on these instances from
MINLPLIB and with one thread on an Intel 17-11700K, 64GB, 3.6GHz.

Description of selection process of benchmark instances. Statistics of the instances.

ANTIGONE, BARON, LINDO, SCIP

Table for all solvers, Result files per solver. Log files per solver, Trace files per solver, Error files per solver

Scaled and shifted geometric means of run times
Feasibility tolerance set to l1e-6. All non-successes are counted as max-time.

The second line lists the number of problems (87 total) solved.

The shifted geometric mean is computed on the 69 instances for which no solver failed.

ANTIGONE BARON LINDO SCIP
geom mean 4.17 1 5.93 2.06
solved 53 63 29 55

e [BM CPLEX can solve problems with convex quadratic constraints
e FICO XPRESS can solve nonlinear programs through linearization

e GUROBI can solve non-convex quadratic and bilinear programs

<y TEPPER

C
ectrical & Computer
 ENGINEERING

[1] http://plato.asu.edu/bench.html
[2] http://minlplib.org
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Complexity introduction

When analyzing an algorithm, we are interested in the amount of time and memory that it will take to solve it.

Q©

To be safe this is usually answered in the worst-case scenario

The discussion here will be mainly the time complexity of algorithms.

We will use the “big-O” notation when given two functions f: S - R., g: S — R, |, where S is an
unbounded subset of R we write that if there exists a positive real number M and zo € S such that
f(z) < Mg(z) forevery & > xo then f(z) = O(g(z))

For us S is going to be the set of instances or problems, and an algorithm is a procedure that will give a
correct answer is a finite amount of time.

An algorithm solves a problem in polynomial time if the function that measures its arithmetic operations
f S — Ry is polynomially bounded by the function encoding the size of the problem 9 : S — R4

[1] Adapted from Integer Programming (1st ed. 2014) by
Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli
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Complexity introduction

e If there exists an algorithm that solves a problem in polynomial time, then that problem belongs to the complexity
class P
o For example LP belongs to P because the interior point algorithm solves it in poly-time

e A decision problem is one with answer “yes” or “no”
e The complexity class NP, non-deterministic polynomial, is the class of all decision problems where the “yes”-
answer can be verified in poly-time

e If all the decision problems in NP can be reduced in poly-time to a problem Q, then Q is said to be NP-complete
o “Is a (mixed-)integer linear set empty?”’ belongs to NP and is actually NP-complete

[1] Adapted from Integer Programming (1st ed. 2014) by Michele Conforti,
Gérard Cornuéjols, and Giacomo Zambelli
[2] Cook, Stephen A, The Complexity of Theorem-Proving Procedures (1971)
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Complexity introduction

e A problem Q can be called NP-hard if all problems in NP can be reduced to Q in poly-time
o Integer Programming is NP-hard
m Since we can transform any NP problem into an integer program in poly-time, if there exists an algorithm
to solve IP in poly-time, then we can solve any NP problem in poly-time: P=NP

e Integer programs with quadratic constraints are proved to be undecidable
o Even after a long time without finding a solution, we cannot conclude none exists...
o MINLP are tough!

[1] Adapted from Integer Programming (1st ed. 2014) by Michele Conforti,
Gérard Cornuéjols, and Giacomo Zambelli
[2] Cook, Stephen A, The Complexity of Theorem-Proving Procedures (1971)

(() EEleNCECIaIN 8(E CEOFI? ﬁ'fér | ’I T E P P E R l@ Universities Space Research Association 35



Carnegie Mellon University

Complexity introduction

e A problem is said to belong to the complexity class BPP, bounded-error probabilistic polynomial time, if there is an

algorithm that solves it such that
o lItis allowed to flip coins and make random decisions

o Itis guaranteed to run in polynomial time
o On any given run of the algorithm, it has a probability of at most 1/3 of giving the wrong answer, whether the

answer is YES or NO. ~ PSPACE problems R\

4 NP problems )

e There exists another complexity class called BQP,
bounded-error quantum polynomial time, which is the

——— = = —
- T

- -
! —

quantum analogue of BPP 1. -
o We hope that some problems belong to BQP and {_ :)

not to BPP to observe Quantum Advantage o -
m E.g., Integer factorization J

The suspected relationship of BQP to other problem spaces

[1] Michael Nielsen and Isaac Chuang (2000). Quantum Computation and Quantum
Information. Cambridge: Cambridge University Press. ISBN 0-521-63503-9.
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Take home message

Integer Programs lie at a very special intersection since they are:

- Interesting from an academic point of view
- Useful from a practical point of view
- Challenging from a computational point of view

We do not expect to observe Quantum Advantage by solving Integer Programs using Quantum Computers
(but who knows right? Maybe P=BPP=BQP=NP)

We are still dealing with complicated problems that require answers, so we are going to try our best to solve
them.

Welcome to Quantum Integer Programming!
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More thoughts

Slide taken from Ed Rothberg (key developer of CPLEX and the RO in guRODbi) on a talk of parallelization
for (M)IP

Quantum Computing @ SUROB!

* Interesting future technology
» Potential to substantially speed up optimization tasks
« Currently still a science project

© 2020, Gurobi Optimization, LLC
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